Unattached radon progeny as an experimental tool for dosimetry of nanoaerosols: proposed method and research strategy.
نویسندگان
چکیده
In this paper the authors discuss a method using 1-nm particulate radon decay products as an experimental tool in the study of local lung deposition and dosimetry for nanoaerosols. The study of aerosol exposure and dosimetry measurements, and related quantitative assessment of health effects, are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry--nanotechnology. Quantitative assessment of aerosol particle behavior in air, in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct nanoparticle dose measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. The issue of the safe use of radon progeny in such measurements is discussed. One of the properties of radon progeny is that they consist partly of 1-nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols.
منابع مشابه
[Radon progeny as an experimental tool for dosimetry of nanoaerosols].
The study of aerosol exposure, dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary indu...
متن کاملTheoretical foundation for a simple method for simultaneous measurements of the unattached fraction and activity median diameter of attached radon progeny.
Calculation of lung dose from established lung dosimetry models requires use of the unattached fraction of potential alpha energy concentration (PAEC) of radon progeny and the activity median diameter (AMD) of attached radon progeny, in addition to the total PAEC. In the present work, for indoor environments without the nucleation mode of aerosols, a method based on the wire screen penetration ...
متن کاملComparison of Radon (222Rn) and Thoron (220Rn) Gamma Dosimetry in the Environment Using the ORNL Mathematical Phantom
Background: The potential hazards of exposure to radiation from radon have been of great concern worldwide, as it is associated with an increased risk of lung cancer. Radon (222Rn) and its progeny are the main sources of radioactivity in the environment. The half-life of 222Rn (3.82 days) is long enough for it to diffuse into and build up in homes. 220Rn or thoron from the 232Th series, and 219...
متن کاملAre radon gas measurements adequate for epidemiological studies and case control studies of radon-induced lung cancer?
The lung dose derived from radon is not attributed to the radon gas itself, but instead to its short-lived progeny. However, in many epidemiological studies as well as in case control studies of the radon risk, the excess number of cancers are related to the radon gas exposure, and not to the radon progeny exposure. A justification for such an approach has resorted to the assumption that there ...
متن کاملEstimation of Radiological Dose From Progeny of 222Rn and 220Rn Using DTPS/DRPS and Wire-Mesh-Capped Progeny Sensors
Radon (222Rn) and its decay products are the major sources of natural radiation exposure to general population. The activity concentrations of unattached and attached short-lived 222Rn and thoron (220Rn) progeny in indoor environment of some dwellings of the Jalandhar and Kapurthala districts of Punjab had been calculated using the deposition-based progeny sensors (DRPS/DTPS) and wire-mesh-capp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inhalation toxicology
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2010